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Abstract
The atmospheric CO2 level, global average temperature, and sea level, which are
three key metrics characterizing Earth’s surface environments, underwent a series
of significant changes over geologic time. Here, I investigate the variation rates of
these three variables during the Phanerozoic Eon and show that they systematically
exhibit scale-independent behaviors. I then derive a generalmathematical formof these
scale-independent patterns based on geosystem-specific assumptions and basic phys-
ical principles. From the perspective of statistical mechanics, these scale-independent
behaviors appearing in the planetary-scale geological system imply that the internal
dynamics and interactions of different components in the Earth system have signifi-
cantly influenced its evolution and stability, which sheds light on Earth’s sustainability
and habitability.

Keywords Scale independence · Variation rates · Environmental variables ·
Atmospheric CO2 level · Global average temperature · Sea level · Phanerozoic Eon ·
Sustainability and habitability

1 Introduction

The Phanerozoic Eon, which spans from around 540 million years ago (Ma) to the
present, witnessed a series of spatial and temporal variations in the geological system.
Modern geochemical techniques and theoretical models are remarkably successful
at reconstructing the history of environmental variables characterizing the geological
system, such as the atmospheric CO2 level, global average temperature, and sea level.
These variables serve as proxies for the evolutionary trajectories of the Earth’s surface
environment and are closely tied to the course of life evolution. The CO2 fluxes

B Haitao Shang
htshang.research@gmail.com

1 Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11004-024-10135-8&domain=pdf
http://orcid.org/0000-0002-5731-4559


Mathematical Geosciences

throughout the atmosphere, lithosphere, and biosphere; variations in CO2 levels reflect
the changes in geological and biological aspects of Earth’s carbon cycle (Hayes and
Waldbauer 2006; Royer et al. 2001). Temperature significantly influences the redox
states of seawater (Huang and Schmitt 2014; Song et al. 2019) and the metabolisms
and evolution of marine life (Mayhew et al. 2012; Song et al. 2021). Fluctuations of
the sea level account for the radiation, diversity, and extinction of life on the ancient
Earth (Hallam and Wignall 1999; Kocsis and Scotese 2021), potentially via species-
area effects (Peters 2007); the patterns of sea-level variations recorded in sedimentary
rocks have been shown to be consistentwith the Phanerozoicmacroevolutionary trends
of marine animals (Peters 2005; Hannisdal and Peters 2011).

Scale independence is a key feature of the power-law pattern, a functional rela-
tion between two variables in which one varies as a power of the other. Generally,
power laws are expressed as y(x) ∝ x−φ , where x and y are two variables and
φ > 0 is a scaling parameter. On a log–log plot, they appear as a straight line,
log10(y) ∝ −φ log10(x), indicating that the underlying regularity of such a pattern
does not depend on specific scales (Bak 2013; Schroeder 2009). Scale-independent
patterns exist widely in various natural systems (Bak 2013; Schroeder 2009); for
instance, the degradation rate constant versus age of organic matter in aquatic systems
(Middelburg 1989; Shang 2023b) and the frequency versus magnitude of earthquakes
(Cannavò and Nunnari 2016; Bak et al. 2002) have been shown to exhibit scale-
independent behaviors. However, such behaviors on the ancient Earth have rarely been
explored; the best known one is the power lawof the frequency versus size of extinction
events in the Phanerozoic biological system (Raup 1986;Bak 2013).Whether such pat-
terns existed in the deep-time geological system remains unknown. Here, I investigate
three representative environmental variables characterizing the Phanerozoic geologi-
cal system—atmospheric CO2 level, global average temperature, and sea level—and
demonstrate that the variation rates in these variables exhibited scale-independent
patterns.

This work is structured as follows. Section2 describes the processes of data pro-
cessing, power-law fitting, goodness-of-fit test, and likelihood-ratio tests. Section3.1
shows the scale-independent behaviors in the variation rates of atmospheric CO2 level,
global average temperature, and sea level on log–log plots (Fig. 1) and presents the
mathematical expressions and statistical analyses of the best-fitting power laws (Table
1). In Sect. 3.2, I derive a general form of these scale-independent behaviors with
some basic physical principles and geosystem-specific assumptions, which offers an
interpretation for the origin of these patterns from the perspective of thermodynamics.
Section3.3 discusses the implications of these scale-independent patterns for the sta-
bility and internal dynamics of the deep-time geological system and the sustainability
and habitability of the modern Earth. This work shows for the first time that power-law
behaviors appear in the Phanerozoic environmental variables and suggests that such
patterns manifest the intrinsic dynamics of a planetary-scale system over geologic
time.
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2 Materials andMethods

2.1 Data

The datasets on the Phanerozoic atmospheric CO2 level, global average temperature,
and sea level are obtained from studies by Foster et al. (2017), Scotese et al. (2021),
and Boulila et al. (2018), respectively. To better analyze the scale-independent pat-
terns, which usually span several orders of magnitude, I interpolate each dataset with
smoothing splines (De Boor 1978), which have been shown to be effective for fitting
the time series for each of these environmental variables (Vérard and Veizer 2019;
Foster and Rohling 2013; Berner 1990) at geologic timescales. I then calculate the
data value at every 0.1 million years with the best-fitting spline for each dataset. I
denote a time series in a given dataset as {mi }, where mi is the mean of data points
at time point i . For each dataset, I take the difference between the data values at
every two consecutive time points (i.e., mi and mi+1) and express the variation rate
at time point i as Ri = (mi+1 − mi )/�t , where �t is the step size. The Ri values
are classified into three categories: decrease (D), increase (I), and change (C). Log-
arithms of negative values are undefined; absolute values of variation rates in these
three categories, which are denoted by |RD| = {|Ri |

∣
∣Ri < 0}, |RI| = {Ri

∣
∣Ri > 0},

and |RC| = {|Ri |
∣
∣Ri �= 0}, are used to investigate the scale-independent patterns in

these datasets. Obviously, |RC| is the union of |RD| and |RI|: |RC| = |RD| ∪ |RI|.
Zero values of Ri are not considered in the analyses not only because the logarithm
of zero is undefined but also because a zero value indicates no variation.

2.2 Power-Law Fitting

Based on Sturges’ rule (Scott 2009), I determine the optimal number of bins (Nbin)
for a dataset using Nbin = log2(Ndata) + 1, where Ndata is the specific number of
data points in this dataset. I denote the number of data points in each category of
|RD|, |RI|, and |RC| by Ndata,D, Ndata,I, and Ndata,C, respectively. Correspondingly,
the optimal numbers of bins for these three categories are Ndata,D = log2(Ndata,D)+1,
Ndata,I = log2(Ndata,I) + 1, and Ndata,C = log2(Ndata,C) + 1, respectively; the empty
bins are discarded. For data in a category of one quantity, I denote the total number of
bins by J and the number of data points in the j th bin by N j ; the set {N0, N1, . . . , NJ },
which is a collection of the numbers of data points in each bin, is henceforth denoted
by {N j }Jj=0.

Akeyproperty of power-lawdistributions is their right tails,where extremevalues of
random variables appear. Occasionally, small values on the left side of the distribution
may not follow a power law; these data points with small values are not used in data
fitting (Clauset et al. 2009; Alstott et al. 2014). To determine the place to truncate the
set of counts {N j }Jj=0, one needs to identify the point where the power-law relation
begins; I denote this truncation point as Nmin. To determine Nmin, I establish a power-
law fit starting from each individual data point in {N j }Jj=0 and then select the point
generating the minimum distance between the fit and the data (Clauset et al. 2009;
Alstott et al. 2014). More specifically, I denote the subset of {N j }Jj=0 that starts from
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the point Nl by Kl = {N j }Jj=l = {Nl , Nl+1, . . . , NJ }, fit data points in each of these
subsets (i.e., K0, K1, . . . , KJ−1) on log–log plots, and calculate the error (denoted
by εl ) between the data and the fit for each subset (Clauset et al. 2009; Alstott et al.
2014); the minimum error for all subsets is denoted as εmin = min{εl}. The subset Kl

corresponding to εmin is the optimal subset for the power-law fitting and is denoted by
Kl,opt. The initial point in the subset Kl,opt then is the optimal truncation point Nmin
defined above. The power law that best fits the truncated dataset Kl,opt starting at point
Nmin is the optimal power law.

2.3 Goodness-of-Fit Tests

To assess the goodness of fit of the power laws, I first compute the coefficients
of determination (R2) and root mean square errors (RMSEs). The R2 measures
the proportion of the variation in the dependent variable that can be explained
by the best-fitting power laws. The value of R2 generally ranges from 0 to 1; a
larger value of R2 indicates a better-fitting and therefore a more reliable model
(Freund and Wilson 2003). The RMSE measures the distance between actual and
predicted values; a small RMSE value suggests a good fit. The Kolmogorov–Smirnov
(KS) test (Massey Jr 1951) and Cramér–von Mises (CM) two-sample test (Ander-
son 1962) are also used to evaluate the goodness of fit of the power laws. The
KS statistic is defined as the maximum distance between the cumulative distribu-
tion functions (CDFs) of the power law that best fits the data (GM) and the data
themselves (GD): max |GM − GD| (Massey Jr 1951). The CM statistic is defined

as

(
∑I

i=0 [GM(xi ) − GD(xi )]2 + ∑J
j=0

[

GM(x ′
j ) − GD(x ′

j )
]2

)

× I × J

(I + J )2
, where

{xi }Ii=0 and {x ′
j }Jj=0 are data independently sampled from two distributions with GM

and GD as the CDFs, respectively (Anderson 1962). I define the null hypothesis as
H0 : GM = GD and the two-sided alternative as H1 : GM �= GD. The critical p value
for these tests is set as 0.05. When p is less than or equal to 0.05, a power law does
not fit the data well; when p is greater than 0.05, a power law adequately describes
the data.

2.4 Likelihood-Ratio Tests

As a property of the power-law distribution, a straight line on a log–log plot is a
necessary but not sufficient condition for the power-law pattern. Other heavy-tailed
processes, such as the stretched exponential or lognormal distribution, may generate
datasets with distributions that are close to power-law patterns due to sampling fluctua-
tions. To determinewhich distribution better fits the data, I perform the likelihood-ratio

test (Clauset et al. 2009): R = log

(

LP(Ncounts,opt|�̂P)

LA(Ncounts,opt|�̂A)

)

. In this formula of R, LP

is the likelihood, fitted using the procedure described above, under the hypothesis
of a power-law distribution; LA is the likelihood, fitted with maximum likelihood
estimation, under the hypothesis of an alternative distribution; and �̂P and �̂A are
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the values of model parameters that maximize the likelihood functions LP and LA,
respectively, in the parameter space. If the value ofR is positive, then the model under
the hypothesis of a power-law distribution (i.e., the model corresponding to LP) out-
performs the model under the hypothesis of an alternative distribution (i.e., the model
corresponding to LA); if R is negative, then the model under the hypothesis of the
alternative distribution prevails. Moreover, to correct for random fluctuations, I follow
Vuong (1989) and Clauset et al. (2009), standardizeR by the standard deviation, and
obtain a p value to determine whether the sign (i.e., negative or positive value) of R
is statistically significant. I set the significance level for the p value to 0.05. When p
is less than 0.05, the test value of R is unlikely to derive from chance fluctuations;
however, when p is greater than or equal to, the test value ofR is inconclusive and the
test fails to indicate that one distribution outperforms the other for the given dataset.

3 Results and Discussion

3.1 Scale-Independent Variation Rates

The variation rates of environmental variables are classified into three categories:
negative (|RD|), positive (|RI|), and all (|RC|). The mathematical definitions of these
three categories are provided in Sect. 2.1. Figure1 illustrates power-law behaviors in
the variation rates of (A–C) atmospheric CO2 level (red circles), (D–F) global average
temperature (blue circles), and (G–I) sea level (green circles). Table 1 summarizes the
mathematical expressions of the optimal power laws (purple straight lines in Fig. 1)
for these datasets (Sect. 2.2) and statistical metrics (i.e., R2 values, RMSEs, and the
p values of the KS and CM tests) measuring the goodness of fit of these power laws
(Sect. 2.3). The results presented in Table 1 show that all fitted power laws have high R2

values and lowRMSEs; the p values of their KS andCM tests are all much greater than
the critical threshold of 0.05 (Sect. 2.3). These results suggest that the mathematical
formulas of the power laws in Table 1 fit the data well.

Although the results presented in Fig. 1 and Table 1 are plausible, further analyses
are required to test the performance of the best-fitting power laws against other heavy-
tailed distributions (e.g., stretched exponential and lognormal distributions), since the
latter may result in datasets that have power law-like distributions because of chance
fluctuations. To do so, I conduct the likelihood-ratio test (Sect. 2.4); the standardized
likelihood ratios (R) and their associated p values are presented in Table 2. For most
of these likelihood-ratio tests, the R values are positive and the accompanying p
values are less than the critical value 0.05, suggesting that the corresponding power
laws outperform alternative distributions (Sect. 2.4). The only exceptions are the tests
for the power law against the lognormal distribution for |RD

CO2
| and |RI

SL|. In these
two cases, although RLN values are positive, the associated pLN values are greater
than 0.05, indicating that these tests are inconclusive (Sect. 2.4) and that both power
laws and lognormal distributions may provide plausible fits for |RD

CO2
| and |RI

SL|.
Nevertheless, the generally better performance of power laws over the alternative
distributions for the variation rates of the three environmental variables (Table 2) and
the systematic power-law patterns presented in Fig. 1 and Table 1 together suggest that
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Fig. 1 Power laws of the negative (|RD|), positive (|RI|), and all (|RC|) variation rates of A–C atmospheric
CO2 level, D–F global average temperature, and G–I sea level in the Phanerozoic. Red, blue, and green
circles represent the counts (i.e., N ′s) versus variation rates (i.e., |Ri | values defined in Sect. 2.1) for
atmospheric CO2 level, global average temperature, and sea level, respectively. The initial small values in
panels (G–I) that do not follow power laws are not included in data fitting (Sect. 2.2). Purple lines are the
best-fitting power laws for the data. Themathematical expressions of power laws, the R2 values and RMSEs
of the best-fitting lines, and the KS and CM p values for goodness-of-fit tests (Sect. 2.3) are provided in
Table 1. The likelihood-ratio tests for best-fitting power laws against alternative distributions (Sect. 2.4) are
presented in Table2
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the power-law relation also serves as a better option for fitting |RD
CO2

| and |RI
SL| than

the lognormal distribution.

3.2 AModel of Scale-Independent Patterns in the Geological System

The atmospheric CO2 level, global average temperature, and sea level characterize
various aspects of the Earth system; their variation rates thus should manifest the
changes in the states of the geological system or some of its components. Here, I
denote the realizations of an environmental variable at two consecutive time points, k
and k+1, asmk andmk+1, respectively. I denote the entropies corresponding to states
mk and mk+1 by Ek = − log p(mk) and Ek+1 = − log p(mk+1), where p(mk) is the
probability that the realizationmk occurs, and Ek characterizes the extent to which the
system at the state corresponding to the realization mk deviates from the equilibrium.
I denote the difference between mk and mk+1 by �mk and the variation in entropy
when the realization of an environmental variable changes from mk to mk+1 by �Ek .
The variation rate at time point k is then expressed as

Rk = �mk

�t
, (1)

where �t is the time step between two consecutive time points k and k + 1. For
convenience, I assume in the following derivation that mk is less than mk+1, so that
both �mk and Rk are positive for all t ; therefore, both log(�mk) and log(Rk) are
always mathematically well-defined. For the case when mk is larger than mk+1, one
can arrive at the same general form of the scale-independent patterns presented below
via replacing �mk and Rt in the following derivation by the absolute values |�mk |
and |Rk |, respectively (refer to the definitions of |RD|, |RI|, and |RC| in Sect. 2.1). In
this work, I do not consider the case when mk and mk+1 are equal because log(�mk)

and log(Rk) are mathematically undefined when �mk = Rk = 0.
From Eq. (1), I obtain �Ek = − log p(�mk) = − log p(Rk · �t) based on the

additivity of entropy (Skilling 1989; Almeida 2003). Since the �t is constant, I get
p(Rk · �t) = p(Rk) · �t ∼ p(Rk) and log p(Rk · �t) = log p(Rk) + log(�t) ∼
log p(Rk). In a continuous form, the expectation of �Ek can be expressed as

〈�Ek〉 = −
∫

p(�mk) · log p(�mk) d�mk ∼ −
∫

p(Rk) · log p(Rk) dRk, (2)

where 〈·〉 represents the average of a quantity, and the probability p(Rk) satisfies the
following normalizing condition

∫

p(Rk) dRk = 1. (3)

The expression of 〈�Ek〉 defined in Eq. (2) is mathematically identical to the Gibbs
entropy in statistical thermodynamics (Gibbs 1902). The variants of the Gibbs entropy,
such as the Shannon entropy and Shannon–Wiener index, have been suggested in
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a variety of subjects to quantify the heterogeneity of possible outcomes of a vari-
able. For example, the Shannon entropy in information theory (Shannon 1948; Lin
1991) evaluates the mean level of information/uncertainty contained in a quantity,
and the Shannon–Wiener index in ecology (Pielou 1966; Ludwig and Reynolds 1988)
describes the spatial diversity of species in natural ecosystems. In this study, 〈�Ek〉
in Eq. (2) measures the temporal heterogeneity of variation rates of the environmen-
tal variables characterizing the evolutionary processes of the Phanerozoic geological
system.

The Earth system is regulated by a variety of intertwined geological and biolog-
ical processes and feedback mechanisms, which not only shape the geological and
geochemical environments but also help maintain Earth’s habitability over geologic
timescales (Lovelock 2016; Lenton 1998; Lenton and Watson 2013). The structures
of natural complex systems, such as the planetary-scale geological system, are usually
neither perfectly ordered nor perfectly disordered; instead, they lie at some intermedi-
ate levels between these two (Bak 2013; Anderson 1972; Prigogine 1980). The order
of magnitude of environmental metrics may better describe the geological system’s
complexity and variability than precise values. In light of the steady-state evolution
proposed by the Gaia hypothesis (Lovelock 2016; Lenton 1998; Lenton and Watson
2013), I assume that the average variation rate of environmental variables ismaintained
at a certain order of magnitude and obtain

∫

p(Rk) · O(Rk) dRk 	 ζ, (4)

where O(Rk) ∼ log Rk is the order of magnitude of Rk , and ζ is a constant.
While the interactions between life and the environment stabilize the Earth system

(Lovelock 2016; Lenton 1998; Lenton and Watson 2013), the dissipative nature of
individual physical and biological processes tends to drive the Earth system and its
components away from steady states (Vallino and Algar 2016; Kleidon 2010). The
maximum entropy production principle suggests that a nonlinear system with a high
degree of freedom, such as the Earth system, tends to select the state that maximizes
the change in entropy (under some external constraints) along its evolutionary trajec-
tory (Dewar 2005; Kleidon and Lorenz 2004; Martyushev 2010). According to this
principle, I calculate the maximum of the average change in entropy, 〈�Ek〉 in Eq. (2),
under the constraints of Eqs. (3) and (4). To do so, I write the following Lagrangian
(Jaynes 1957)

L = −
∫

p(Rk) · log p(Rk) dRk + θ

(

1 −
∫

p(Rk) dRk

)

+φ

(

ζ −
∫

p(Rk) · log Rk dRk

)

, (5)

where θ ∈ R
+ and φ ∈ R

+ are Lagrangian multipliers. I take the derivative of both
sides in Eq. (5) with respect to p(Rk) and get
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∂L
∂ p(Rk)

= −(log p(Rk) + 1) − θ − φ log Rk . (6)

To obtain themaximum of the average change in entropy, I set ∂L/∂ p(Rk) = 0, which
gives

p(Rk) = R−φ
k · exp[− (θ + 1)]. (7)

When we conduct M measurements, the number of times that variation rates with the
value Rk occur can be expressed as N (Rk) = M · p(Rk). I substitute Eq. (7) into this
relation and obtain

N (Rk) ∼ R−φ
k , (8)

which is a general form of the scale-independent patterns presented in this study.

3.3 Implications

Studies of scale-independent behaviors generally focus on physical and biological
systems on the modern Earth; less attention, however, has been paid to the pale-
oenvironment. The most well-known scale-independent pattern on the ancient Earth
appeared in the Phanerozoic biological system—that is, the power law between the fre-
quency and size of extinction events (Raup 1986; Bak 2013). This work shows for the
first time that scale-independent patterns existed in the deep-time geological system
as well. The systematic power-law patterns in the variation rates of three key vari-
ables characterizing Earth’s surface environment—the atmospheric CO2 level, global
average temperature, and sea level—suggest that certain fundamental mechanisms
should have been responsible for such patterns. Although scale-independent behav-
iors are commonly taken as hints at fundamental mechanisms behind the observed
data, the specific mechanisms of many such patterns are not well understood (Bak
2013; Schroeder 2009). From the perspective of thermodynamics, I develop a simple
model to derive a general form of the scale-independent variation rates presented in
this study based on some physical principles and geosystem-specific assumptions.
This minimalistic model is detached from the details of the complex geosystem and
provides a conceptual interpretation for the power laws appearing in the environmental
metrics. Nevertheless, this model does not explain why the power-law exponents take
those specific values and what the physical/biological factors influencing these values
are.

A variety of theories have been proposed to explain scale-independent patterns in
nature. Some theories focus on specific physical or biological systems, while others
attempt to offer universal interpretations for scale-independent behaviors. For exam-
ple, to explain thewell-known power laws between the frequency and size of extinction
events in the Phanerozoic biological system (Raup 1986; Bak 2013), several specific
models have been suggested in previous studies, such as the NK model of Kauffman
and Johnsen (1991), the percolation model of Plotnick and McKinney (1993), and
the random stress model of Newman (1997). Some of these models (e.g., the NK
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and percolation models) have been ruled out while others (e.g., the random stress
model) require further validation. On the other hand, with more fundamental physical
principles, Bak et al. (1987) suggested self-organized criticality while Carlson and
Doyle (1999) proposed the “highly optimized tolerance” mechanism to explain the
universal mechanisms responsible for power laws. Although these theories offer plau-
sible interpretations for scale-independent behaviors in a variety of natural systems
(Bak et al. 1987; Carlson and Doyle 1999), scale-independent patterns do not nec-
essarily derive from these mechanisms (Hergarten 2002; Solow 2005). Whether the
self-organized criticality or “highly optimized tolerance" mechanism could explain
the scale-independent variation rates of the Phanerozoic CO2 level, global average
temperature, and sea level (Fig. 1 and Table 1) requires future investigation.

The results in this work bring up a caution as well. In geological and geochemical
studies, extraordinarily large values are generally viewed as anomalies and attributed
to abnormal environments in certain periods. Some large events, such as the massive
CO2 emission in the Permian–Triassic transition and the Paleocene–Eocene Thermal
Maximum event (McInerney and Wing 2011), have attracted much attention. How-
ever, other significant events may remain obscure since the seemingly anomalous data
that actually manifest these events might have been discarded as outliers. Although
excluding extreme data appears reasonable because doing so could generate normal
distributions and preserve equilibrium explanations, discarding large values may also
conceal power-law patterns and “throw the baby out with the bathwater” (Bak 2013).
Thus, it is advisable to perform careful assessments prior to removing extreme data in
geological/geochemical measurements.

The fundamental principles governing the geological and biological systems in the
modern environments should be the same as or similar to those under the ancient con-
ditions; the scale-independent patterns exhibited by the atmospheric CO2 level, global
average temperature, and sea level on the ancient Earth therefore have significant
implications for the modern Earth’s sustainability and habitability. From the perspec-
tive of statistical mechanics, these scale-independent patterns are likely to derive from
the internal dynamics and interactions of various components of the planetary-scale
geological and biological systems (Bak 2013; Schroeder 2009). Studies of global
environmental change conventionally regard external factors (e.g., human activity) as
major drivers of climate crises. Although external factors indeed influence the stability
of Earth’s surface environment, they primarily contribute to regulating the degree of
freedom of the Earth system rather than instigating significant changes (Ehlers and
Krafft 2006; Jacobson et al. 2000). The global biogeosystem, which is governed by
complex and coupled feedback mechanisms, is usually resilient to the perturbations of
external forces and able to maintain itself at steady states in many cases (Folke et al.
2010; Steffen et al. 2018). Moreover, the scale-independent variation rates presented
in this study also suggest that the complex interactions of the components in the bio-
geosystemmay be able to self-organize it into critical states where catastrophic events
can occur. After all, extreme events in the Earth system can originate from internal
interactions and do not require external forces as drivers. For instance, the interlocked
feedback mechanisms in the deep-time biogeosystem might have resulted in the rapid
accumulation of molecular oxygen on Earth’s surface (Alcott et al. 2019; Laakso and
Schrag 2017; Shang 2023c), abrupt changes in sedimentary records such as dolomite
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and iron formations (Shang 2023a; Konhauser et al. 2017), andmass extinctions of life
(Jablonski 2001; Bond and Grasby 2017; Bambach 2006) during short time periods.
Therefore, the research on the modern Earth’s sustainability and habitability should
pay more attention to the intrinsic dynamics of the biogeosystem rather than focusing
only on impacts induced by humans.

The significant role that internal dynamics and interactions play in Earth’s stability
also sheds light on climate change mitigation (Abbass et al. 2022) and ecosystem-
based adaptation (Scarano 2017). With the advent of the Anthropocene, especially of
the Industrial Revolution, gigantic amounts of CO2 emission due to the utilization of
coal, oil, and natural gas (Burnhamet al. 2012;Yoro andDaramola 2020; Friedlingstein
et al. 2010) have dramatically altered Earth’s carbon cycle and other biogeochemical
cycles tightly coupled with it and remarkably affected Earth’s surface environments
(e.g., increases in global average temperature and sea level) (Raupach and Canadell
2010; He and Silliman 2019; Summerhayes and Zalasiewicz 2018). While reducing
the influence of human activity (e.g. CO2 emission) is widely considered an effec-
tive way of mitigating climate change, taking advantage of the internal interactions in
the biogeosystem provides an alternative solution for maintaining Earth’s sustainabil-
ity and habitability. New concepts and strategies for climate change mitigation and
ecosystem-based adaptation such as blue carbon (Macreadie et al. 2021) and ocean
nourishment (Iversen 2023), which take the latter approach, are expected to prevent
the Earth system from heading toward more crises.

The evolutionary histories of geological and biological systems are correlated,
suggesting that the scale-independent behaviors may also exist in the variation rates
of metrics characterizing the deep-time biological system. Moreover, the fundamental
physics governing the Phanerozoic geological system should have been the same
during the Precambrian and potentially hold on Earth-like exoplanets. Such temporal
and spatial universalities imply that the observational data of the geological quantities
characterizing environmental changes, such as the evolution of biogeochemical cycles,
on the Precambrian Earth and Earth-like exoplanets may exhibit scale-independent
behaviors as well. These patterns may be viewed as snapshots of planetary-scale
dynamical systems over geologic timescales.
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